Incorporating Patient Breathing Variability into a Stochastic Model of Dose Deposition for Stereotactic Body Radiation Therapy

نویسندگان

  • Sarah E. Geneser
  • Robert Michael Kirby
  • Brian Wang
  • Bill Salter
  • Sarang C. Joshi
چکیده

Hypo-fractionated stereotactic body radiation therapy (SBRT) employs precisely-conforming high-level radiation dose delivery to improve tumor control probabilities and sparing of healthy tissue. However, the delivery precision and conformity of SBRT renders dose accumulation particularly susceptible to organ motion, and respiratory-induced motion in the abdomen may result in significant displacement of lesion targets during the breathing cycle. Given the maturity of the technology, sensitivity of dose deposition to respiratory-induced organ motion represents a significant factor in observed discrepancies between predictive treatment plan indicators and clinical patient outcome statistics and one of the major outstanding unsolved problems in SBRT. Techniques intended to compensate for respiratory-induced organ motion have been investigated, but very few have yet reached clinical practice. To improve SBRT, it is necessary to overcome the challenge that uncertainties in dose deposition due to organ motion present. This requires incorporating an accurate prediction of the effects of the random nature of the respiratory process on SBRT dose deposition for improved treatment planning and delivery of SBRT. We introduce a means of characterizing the underlying day-to-day variability of patient breathing and calculate the resulting stochasticity in dose accumulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying variability in radiation dose due to respiratory-induced tumor motion

State of the art radiation treatment methods such as hypo-fractionated stereotactic body radiation therapy (SBRT) can successfully destroy tumor cells and avoid damaging healthy tissue by delivering high-level radiation dose that precisely conforms to the tumor shape. Though these methods work well for stationary tumors, SBRT dose delivery is particularly susceptible to organ motion, and few te...

متن کامل

A quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates

Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...

متن کامل

Impact of Prolonged Fraction Delivery Time Modelling Stereotactic Body Radiation Therapy with High Dose Hypofractionation on the Killing of Cultured ACHN Renal Cell Carcinoma Cell Line

Introduction: Stereotactic body radiotherapy delivers hypofractionated irradiation with high dose per fraction through complex treatment techniques. The increased complexity leads to longer dose delivery times for each fraction. The purpose of this study is to investigate the impact of prolonged fraction delivery time with high-dose hypofractionation on the killing of cultured ACHN cells.Method...

متن کامل

4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung.

Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific ph...

متن کامل

First clinical implementation of audiovisual biofeedback in liver cancer stereotactic body radiation therapy

This case report details a clinical trial's first recruited liver cancer patient who underwent a course of stereotactic body radiation therapy treatment utilising audiovisual biofeedback breathing guidance. Breathing motion results for both abdominal wall motion and tumour motion are included. Patient 1 demonstrated improved breathing motion regularity with audiovisual biofeedback. A training e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information processing in medical imaging : proceedings of the ... conference

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2009